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Single-mode Faraday waves in small cylinders 
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(Received 31 March 1989) 

Experiments on single-mode Faraday waves in small rectangular and circular 
cylinders in which both capillary and viscous effects were significant are reported. 
Measurements of threshold forcing (for neutral stability) and steady-state wave 
amplitudes are compared with theoretical predictions. Theoretical predictions of the 
resonant frequency of a single mode and of the threshold amplitude for its excitation 
on the hypothesis of linear boundary -layer damping agree well with the measured 
data. (The theory must use the measured damping rate to predict these quantities for 
waves in the rectangular cylinder.) Theoretical predictions of wave amplitudes are in 
reasonable agreement with those observed in the circular cylinder; however, the 
theory provides only qualitative predictions of amplitudes for waves in the 
rectangular cylinder. In experiments in which two modes are theoretically admissible, 
the one with the smaller damping rate is observed; however, a single-mode 
calculation proves inadequate for the prediction of the stability boundary. 

1. Introduction 
We consider here those waves (Faraday waves) that are subharmonically excited 

by the vertical oscillation of a cylinder of fluid. Paraday’s (1831) original experiments 
involved multi-mode wavefields, whereas, except as otherwise noted, we consider 
configurations in which only a single mode is excited. Our objective is to extend 
previous comparisons between (weakly nonlinear) theoretical predictions and 
measurements, focusing on (i) the effects of viscosity on neutral stability and 
dispersion, (ii) the applicability of a theoretical model that includes linear damping 
(Stokes boundary layers) to waves in small cylinders in which other effects, e.g. 
capillary hysteresis, may be significant, and (iii) the applicability of single-mode 
theory in those parametric domains in which either one or two modes are 
theoretically possible. To this end, we measured wave-damping rates, threshold 
forcing amplitudes, natural frequencies, and steady-state amplitudes of waves in 
rectangular and circular cylinders of dimensions such that both viscosity and surface 
tension were significant. We compare our data with Miles’s (1984) theoretical 
predictions, which we recapitulate in $2. 

In earlier experiments, Benjamin & Ursell (1954) and Dodge, Kana & Abramson 
(1965) found reasonable agreement between their measured threshold amplitudes 
and the inviscid predictions of Benjamin & Ursell (1954) except for three 
discrepancies : (i) the inviscid theory predicts a zero threshold amplitude at 
resonance, whereas the actual waves must surmount a viscous threshold; (ii) the 
measured bandwidth is narrower than the inviscid prediction; and (iii) the measured 
resonant frequency is smaller than the inviscid prediction. These discrepancies are 
typical of viscous effects ; however, calculated viscous damping rates were not large 
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enough to explain them in the earlier experiments. (Benjamin & Ursell 1954 and 
Dodge et at. 1965 did not report measured damping rates.) Dodge et a2. (1965) also 
reported amplitude measurements of waves in circular cylinders about twice as large 
as ours. Virnig, Berman, & Sethna (1988) measured the steady-state amplitudes of 
waves in large rectangular cylinders in which viscous and capillary effects were small. 
Their data were in reasonable agreement with the calculations of Gu, Sethna & 
Narain ( 1988). 

We describe the experimental apparatus and procedures for the present 
experiments in $3 and our results in $4. First, we show that the measured wave 
damping is linear and, although larger than, scales like that predicted by a linear 
boundary-layer analysis. Second, we compare measurements of natural frequencies 
and threshold (forcing) amplitudes for neutral stability with the viscous predictions. 
We find that the viscous shift of frequency is as significant as the shift of the 
threshold amplitude for stability. The calculations fit the data reasonably well for 
neutral stability of waves in the circular cylinder, but the measured linear damping 
rate is required for the calculation of neutral stability of waves in the rectangular 
cylinder. These results support the hypothesis that damping is dominated by linear 
viscous effects but suggest that linear damping in addition to that due to Stokes 
boundary layers may be present for waves in the rectangular cylinder. Capillary 
hysteresis and other nonlinear contact-line effects do not appear to have been 
significant in our experiments. (See Miles 1967 for a review of wave damping in closed 
basins.) 

Third, we compare the predicted steady-state wave amplitudes with measured 
data. We find quantitative agreement between theoretical predictions and data for 
waves in the circular cylinder, but only qualitative agreement for waves in the 
rectangular cylinder. Finally, we examine a wavefield that comprises only one mode, 
although two are available (based on the stability calculation) for excitation, and 
find that the neutral stability calculation does not agree with our experiments ; 
however, the single-mode theory appears to be applicable for calculations of wave 
amplitudes. 

We emphasize that the theory outlined in $2 assumes that both E - k, a, (see (2.4)) 
and k, a, are small, where a, is the amplitude of the prescribed vertical oscillations 
and a, and k,  are the amplitude and wavenumber of the dominant mode. The forcing 
parameter in the experiments, 6 - 0.05, was indeed small, but the wave slope k, a, 
was as large as 0.9510.75 for the circular/rectangular cylinder, This discrepancy 
suggests that the weakly nonlinear theory is adequate beyond its putative range of 
validity for waves in the circular cylinder, but provides perhaps the most likely 
reason for disagreement between the predicted and measured amplitudes of waves in 
the rectangular cylinder. 

2. Theory 

the surface displacement in the form 
Following Miles (1984) (see also Miles & Henderson 1990 for a review), we expand 

00 

~I(x,  t )  = E Vn(t) @n(x) ,  (2.1) 
n-1 

where ykn form a complete set of orthogonal modes, normalized according to 
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S is the cross-sectional area of the cylindrical basin, n is an abbreviation for the pair 
of numbers that is associated with each mode, 

P 
a1 

qn(t)  = S,,l[r)(r) coswt+q(T)s inwt]+-[A, (~)  cos2wt+B,(~) sin2wt+Cn(7)](2.3) 

is the corresponding generalized coordinate, 1 is a dimensional lengthscale of order ei, 
where 

is a small parameter ( E  < 1 implies weak nonlinearity), a, is the dimensional forcing 
amplitude, h is the water depth, k, is the wavenumber of the n = 1 mode, and 1 and 
a1 are given by (2.12) and ( 2 . 1 3 ~ ) .  The dominant component of the wavefield is (by 
definition) the n = 1 normal mode with frequency w and dimensionless amplitudes p 
and q. Additional modes, with amplitudes of order e, may be present with the forcing 
frequency 20, dimensionless amplitudes A ,  and B,, and mean displacements 
proportional to C,. All of the amplitudes depend on the slow time 7 = ewt, but A,, 
B,, and C, are negligible in the present approximation. 

E = a,, k, tanh k, h (2.4) 

We also introduce the tuning parameter 
w 4  - ($2 P=,,;: 1 (2.5a) 

and the bandwidth parameter y = [1 - ( 6 / ~ ) ~ ] f ,  (2 .5b)  

where 6 is the ratio of actual to critical damping, and hl is the viscous natural 
frequency (2.18) of the n = 1 mode. Neutral stability is determined by p = f y, which 
implies the threshold forcing amplitude (at which subharmonic waves are excited) 

a, = [k, tanh (k, h)]-l 

Steady-state wave amplitudes depend on the relative magnitudes of /? and y .  For 
0 < S / E  < 1, we have the following configurations : 

(i) B’Y: p = q = o ,  (2.7) 

(ii) - y < B < y :  
p = f(y-p)tcos(in++), q = f(y-B)tsin(in++), (2.8a, b)  

p = q =  0, ( 2 . 8 ~ )  

(iii) ~ < - y :  p=f(-y-p)+cos@, q=f(-y-,@sin+, (2.9a, b)  

p = q = o ,  (2 .9~)  

where q5 is determined by cos2g5 = y. 
For (i) the plane surface is stable. For (ii) the wave grows and stabilizes at the 

steady-state amplitudes given by (2.8a, b ) .  For (iii) the plane surface is stable if the 
wavemaker starts from rest ; however, an initially present wavefield may tend to the 
amplitudes (2.9a, b ) .  

The dimensional amplitudes a,, of the w-component of the wavefield, and a2, of the 
secondary, 2w-component, are related to the dimensionless amplitudes by 

a1(7) = ZNJJI(~)~ + q ( ~ ) ~ ] ;  (2.10) 

and (2.11) 
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where N,, the normalization constant implied from (2 .2) ,  is l /Jo(ko,R) for 
axisymmetric waves in the circular cylinder of radius R and 1 / 2  for one-dimensic ral 
waves in the rectangular cylinder, 

I = 2 a l ( e / ~ ~ l ) + ,  (2.12) 

and (2 .13a,b)  
(1 + k;Z$) 

a,( 1 + k: 2:) a, = (k ,  tanh E,h)-l, 1, = ( a 1 1 n  - i a n l , ) .  

The coefficient A is given by 

and T is the kinematic surface tension. The correlation coefficients C,,, describe the 
coupling among the normal modes. Table 1 lists the required coefficients for the 
present experiments. For waves in the rectangular cylinder, the only non-zero 
correlation coefficient occurs for interactions of the dominant mode with its 
superharmonic. The dominant axisymmetric mode in the circular cylinder may 
interact significantly with its first few harmonics. 

The above calculations incorporate linear damping on the assumption that viscous 
effects are confined to thin, laminar boundary layers at the free surface and along the 
wetted surface of the fluid cylinder. The dominant effects of linear damping are an 
exponential decay in wave amplitude at a rate yo and a dependence of the dispersion 
relation on yo. For capillary-gravity waves, the viscous dispersion relation is 

Glff l  = wZffl( 1 - 6) = (1 - 6) [(gk,, + TIC;,) tanh k,, h]:, (2.18) 

where wlffl  is the inviscid natural frequency of the (Z,m) normal mode, k,, is the 
corresponding wavenumber, hlffl is the viscous-shifted frequency, and S = yo/w. In 
the rectangular cylinder the wavenumber of the (2,m) mode is k,, = 
[ ( Z Z / U ) ~ +  ( m . ~ / b ) ~ ] ~ ,  and the cross-sectional area is S = ab. For the circular cylinder, 
1 and m indicate the number of nodal diameters and nodal circles, respectively, and 
k,, is the mth positive zero of J;  (k,,R) (where J;  is the derivative of the lth-order 
Bessel function). 

Analytical estimates of 6 are available (Miles 1967). In the present model, the 
boundary layer at the surface corresponds to a surface film that is free to move 
vertically but cannot stretch horizontally, which implies 

k,, cash' k,,  h -+ klm 
= (??r [ sinh 2k,, h sinh 2k,,  h (2.19) 
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Correlation. Coefficient Rectangular cylinder Circular cylinder 

0 -0.8746 
0.707 + 0.8868 
0 -0.0106 
0 -0.0011 
1.500 +2.5515 
1.500 k: -0.6249 k: 

TABLE 1. Correlation coefficients for spatial mode coupling in rectangular and circular cylinders. 

The first, second and third terms in the square brackets represent damping in the 
bottom, free-surface and sidewall boundary layers. It is the sidewall boundary layers 
that cause yo to depend on the modal structure of the wavefield. For example, 

2k1mh 1 - a =-[ 1 1 + (Z/kz,,, R)2  
* 2R l-(Z/klmR)2 sinh2kz,h 

for waves in a circular cylinder, while 

(2.20) 

(2.21) 

for a rectangular cylinder. 

3. Experimental apparatus 
The apparatus comprised glass rectangular and circular cylinders, an electro- 

magnetic shaker with feedback, and wave gauges. The circular cylinder had a 
radius of R = 3.725 cm. The rectangular cylinder was 8.870 x 3.205 cm2, joined by 
silicone at the corners, where a meniscus was visible. The fluid depth varied between 
1.000 cm and 2.050 cm. (These lengths are accurate to kO.002 cm.) 

The fluid was distilled water, filtered of organics and particles greater than 0.2 pm, 
with Kodak Photo Flo 200 solution added in the ratio of 80 : 1 (water :Photo Flo). 
Photo Flo allowed the fluid to slide along the glass walls with a constant orientation ; 
without it, the water sometimes (irreproducibly) pinned at the glass walls, perhaps 
because of microscopic defects in the glass. Photo Flo also produced a film at the 
surface, which we inferred from the fact that bubbles arriving at tKe surface required 
about one minute to pop. This delay compares with minimum delays of 0.5 s for a 
contaminated surface and 0.01 s for a clean surface, reported by Scott (1979) and 
Kitchener & Cooper (1959), respectively, which suggests (and we believe) that our 
films were saturated (inextensible). The static surface tension at the fluid-air 
interface, measured with a Fisher, Model 20 tensiometer, was 42.3 dyn/cm (at 23 "C). 
The viscosity of the fluid, although unknown, presumably approximated that of pure 
water, Y = 0.01 cm2/s. We use this value in (2.19) to calculate linear damping rates 
for subsequent comparisons with theory unless otherwise stated. We sometimes 
found it necessary to use measured damping rates, in which cases we used (2.19) to 
calculate an effective viscosity. We measured the damping rates by stopping the 
wavemaker, recording the temporal decay of the wavefield, and complex- 
demodulating the time series to obtain the instantaneous wave amplitudes for the 
o-component. (See Bloomfield 1976, pp. 118-150 for a discussion of complex 
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demodulation.) The mechanical properties of the wavemaker limited our measure- 
ments of damping rates to waves with frequencies less than about 10 Hz. 

The wavemaker, which drove the cylinder vertically, was an electrodynamic 
shaker, Bruel & Kjaer Mini Shaker Type 4810. Its horizontal accelerations were not 
measured ; however, according to specifications, transverse accelerations are less 
than 3% of axial accelerations for frequencies up to 5 kHz. A non-contacting 
proximity sensor (Kaman model KD-2310) monitored the shaker motion and 
provided a signal to a servo-controller. The controller acted as a feedback device to 
ensure that the actual motion followed the programmed one; additionally, it 
provided measurements of the forcing amplitude, accurate to 0.005 mm. A Digital 
Equipment Corporation VAXstation I1 computer system provided the command 
signal to the shaker. The computer had analog input and output devices, as well as 
two real-time clocks for separate sampling and command frequencies. 

An in situ, capacitance-type gauge measured a time series of the surface 
displacement. It had a diameter of 1.15 mm (the smallest wavelength measured is 
about 10 mm) and is accurate to 0.01 mm. We filtered the gauge signal through two 
channels of a Krohn-Hite Model 3323 low-pass, analog filter, which also produced a 
20db gain, and digitized it with the computer. We then subtracted the cylinder 
motion at frequency 2w from the filtered signal, since the gauge was not attached to 
the cylinder. To examine the amplitude evolution of the different components of the 
wavefield, we complex-demodulated the time series at  the forcing frequency 2w and 
the wavefield frequency w .  We calibrated the gauge by comparing the distance from 
the quiescent fluid surface to the wave crest, measured with a mechanical point 
gauge, to the corresponding voltage response from the capacitance gauge. The 
mechanical point gauge is a Lory Type C combined with a dial-micrometer accurate 
to 0.01 mm. The point gauge also monitored the water depth. 

4. Results 

(forcing) amplitudes and steady-state wave amplitudes. 
We now compare theory and experiment for linear damping rates, threshold 

4.1. Viscous damping rates 
Figure 1 shows the results of a damping experiment, for a 7 Hz wave in the circular 
cylinder. Figure 1 (a) is the time series ; figure 1 ( b )  is the amplitude of the envelope. 
The slope of the decaying amplitude curve in figure 1 (b )  is the linear damping rate, 
yo, which is constant within & 8 % for each experiment. Although the decay appears 
to be linear, the rate is 1.65 times larger than predicted by (2.19) with v = 0.01 cm2/s. 
Figure 2(a) shows measured and calculated damping rates as a function of wave 
frequency for additional experiments in the circular cylinder. The bandedness of the 
calculated values is a consequence of (2.20), which predicts that radial nodes increase 
the damping rate. The measured values verify this prediction for the first two, well- 
separated modes, (0 , l )  and (3,O). The next two modes, ( 1 , l )  and (4,0), have nearly 
the same wavenumber; nevertheless, only the ( 1 , l )  mode, which has the lower 
calculated damping rate, was excited in the experiments. Similarly, when the ( 5 , O )  
and (2 , l )  modes were both available, the mode with the lower calculated damping 
rate, (2, l), was observed. (The modal structure was not resolvable for wavefields 
with frequencies above 8 Hz). These experiments imply that when two modes are 
closely spaced but have different damping rates due to the sidewall boundary 
conditions, the mode with the smaller yo will be excited. In addition, (2.19) and (2.20) 
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adequately predict yo if v is replaced by an effective value of 0.03 cmz/s. We remark 
that (2.19) neglects the variations in surface tension that result from the straining of 
the surface film. Miles (1967) reports that these surface-tension gradients increase the 
damping rate by as much as a factor of two, and in the experiments in the circular 
cylinder the measured damping rates are about 1.7 times larger than that predicted 
by (2.17). 

Figure 2 ( b )  shows similar results for wave damping in the rectangular cylinder but 
with three differences. First, the modal dependence of yo is not as pronounced, and 
it produces a raggedness, rather than a bandedness, in the calculations. Second, the 
measured damping rates are much larger, and the effective coefficient of viscosity is 
an order of magnitude higher than that of water. Third, although the damping is 
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linear, the dependence of yo on frequency is not predicted adequately by (2.19). The 
waves in the rectangular cylinder seem to be affected by additional (to that from 
laminar boundary layers) damping. 

4.2. Neutral stability 
Figure 3 shows the neutral stability curves as a function of forcing amplitude a, and 
wavefield frequency W / ~ R  for the (0 , l )  modes in the circular (figure 3 a )  and 
rectangular (figure 3 b )  cylinders. These stability boundaries predict a,, for a given 
forcing frequency 20 a t  which the (1,m) mode with frequency o will be excited. In  
these experiments, the wavenumber, wave frequency and forcing amplitude were 
known; the natural frequency hol was calculated from (2.18), and 6 was both 
calculated from (2.19) and measured as described in $3. The differences between the 
viscous and inviscid curves in figure 3 show that viscosity shifts the inviscid 
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prediction of resonant frequency (the resonant frequency corresponds to the 
minimum of the curve), raises the minimum threshold amplitude to a positive value, 
and decreases the bandwidth for waves. 

A comparison between the solid curves and the data in figure 3(a) shows that (2.6) 
and (2.19) predict the measured stability fairly well for the (0, I) mode waves in the 
circular cylinder. For this case, the predicted and measured natural frequencies are 
indistinguishable. We note that for these waves, the measured damping rate is about 
1.65 times larger than predicted by (2.19) ; however, calculations from (2.6) with the 
measured damping rate predict a natural frequency that is about 0.4% less than 
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FIGURE 4. Experiments on the (0 , i )  mode in the circular cylinder with h = 2.04 cm. (a)  Stability 
boundaries : -, k,,, = 1.03 cm-' and 6 = 0.008 ; ---, k,, = 1.13 cm-l and 6 = 0.012; 0,  
locations of the experiments with a, = 0.203 mm. ( b )  Steady-state wave amplitudes: -, 
calculations with 6 = 0.008; ---, calculations with 6 = 0; 0 ,  measurements. 

observed. In  contrast, for the (0 , l )  mode in the rectangular cylinder (figure 3 b ) ,  (2.6) 
adequately predicts the measured stability only if the measured linear damping rate 
is used. (The measured damping rate was about twice as large as predicted by (2.19) 
and corresponds to an effective viscosity of v = 0.045 cm2/s.) For waves in the 
rectangular cylinder the predicted natural frequency is within 0.7% of that 
observed. The measured bandwidth is wider than predicted; for o > t;fin the 
calculations overpredict the threshold amplitude. In both cylinders, those waves in 
experiments for which w < h,, were more likely to become unstable, even near the 
threshold forcing amplitude. In  particular, the waves corresponding to the first two 
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points in figure 3(a) broke after excitation. The high-frequency limit on the data is 
in accord with predictions ; forcing a t  frequencies above this limit excited the next 
normal mode. 

Our results imply that a linear damping model is adequate for the prediction of the 
neutral stability of Faraday waves in small cylinders. The Stokes boundary-layer 
analysis was adequate for waves in the circular cylinder, while the measured 
damping rate was required for waves in the rectangular cylinder. For experiments in 
larger cylinders, viscous considerations are less important. However, Virnig et al. 
(1988), whose experiments were conducted in a much larger rectangular tank, report 
that the addition of Photo Flo to their water caused a slight decrease in both 
frequency and wave amplitudes. They had incorporated the new surface tension in 
their calculations, but not a different viscosity. It is possible that additional viscous 
damping caused the observed decreases ; however, calculations from (2.19) and (2.21) 
would require an effective coefficient of almost v = 1 cm2/s (an order of magnitude 
larger than observed herein, and two orders of magnitude larger than that of water). 
If viscosity was responsible, this large coefficient, reminiscent of an eddy viscosity, 
suggests that the boundary layers in their experiments (and perhaps in the present 
experiments) were turbulent, rather than laminar. (For the experiments of Virnig 
et al., the wave Reynolds number Re = W / v k 2 ,  is of order lo4. For the present 
experiments, Re - lo3.) 

4.3. Wave amplitudes 

Figure 4(a) shows the location in stability space of experiments on the (0 , l )  mode in 
the circular cylinder with a, = 0.0203 cm. Measurements of the steady-state wave 
amplitudes a, for these experiments are shown in figure 4 ( b )  as a function of both 
wave frequency and the tuning parameter p. The addition of the viscous damping 
rate from (2.19) allows (2.8) and (2.10) to adequately predict the wave amplitudes for 
- y < /3 < + y .  No wavefields were excited for p < - y or /3 > + y ,  as predicted by (2.7) 
and (2 .9~) .  We note that, although the theory assumes weak nonlinearity in wave 
slope as well as in e,  (2.4), predictions are in reasonable agreement with the data for 
wave slopes as large as 0.95. (The calculations in figure 4 ( b )  use the predicted 
damping rate (2.19); calculations that use the measured damping rate predict 
amplitudes that are about 0.8 times as large as those observed.) 

Predictions of amplitudes for waves in the rectangular cylinder do not agree as well 
with the measurements as those for the circular cylinder. In  figures 6-9 we use the 
predicted damping rate (2.19) in the calculations and note that the measured 
damping rates result in predictions of wave amplitudes that are about 0.5 times as 
large as those observed. Figure 5 shows the location in stability space of four (three 
are distinguishable) sets of experiments with different forcing amplitudes. The lower 
limit on the frequency band in each set of experiments corresponds to the frequency 
below which the wavefield became unstable. That is, the wavefield evolved from the 
(0 , l )  mode to some nonlinear mode that had a hump of fluid a t  the x = 0 end of the 
tank and sloshed back and forth with one node in the y-direction ; accordingly, an 
amplitude measurement was not significant. The upper limit corresponds to the 
frequency above which the ( 1 , i )  mode was excited. 

Figure 6 shows amplitudes a, for waves in set I1 of figure 5 as a function of wave 
frequency and the tuning parameter. As in the circular cylinder, the wave amplitudes 
decrease with increasing frequency, in qualitative accord with the theoretical 
predictions ; however, the decrease in amplitude with frequency is steeper than 
predicted. Figure 5 shows that these experiments are located in stability space near 
the intersection of the neutral stability curves for the (0 , l )  and ( 1 , l )  modes. Ciliberto 
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FIGURE 5 .  Stability space for four sets (I-IV) of experiments on the (0 , l )  mode in the rectangular 
cylinder with h = 1.0 cm. Stability boundaries: -, k,, = 0.98 cm-' and 6 = 0.028 (measured 
damping ratio); ---, k,, = 1.04 cm-' and S = 0.037 (measured damping ratio); ---, measured 
boundary (cubic-spline fit through data in figure 3 b ) ;  0 ,  locations of experiments with a,, = 0.500 
mm (I), 0.473 mm (11), 0.470 mm (111), and 0.425 mm (IV). 

B 
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FIGURE 6. Experiments 11: wave amplitudes for the (0 , l )  mode in the rectangular cylinder 
with a, = 0.473 mm; 0 ,  data; -, caiculations with 8 = 0.013; ---, calculations with 6 = 0 

& Gollub (1985), who observed the interaction between the (4,3) and (7 ,2)  modes in 
a circular cylinder, report that wavefields located near the intersection of two 
stability boundaries may become chaotic, which suggests that the single-mode 
theory is inapplicable in this domain. 

The amplitudes of waves from sets I11 and IV indicated in figure 5 are presented 
in figure 7,  which also shows the viscous prediction of wave amplitudes as a function 
of wave frequency. These results are essentially the same as those for waves in set 11, 
except that the decrease in wave amplitudes with increasing frequency is less steep 
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FIGURE 7. Experiments I11 and IV: wave amplitudes for the (0 , l )  mode in the rectangular 
cylinder. I11 : calculations (---) and measurements (0)  with a, = 0.470 mm. IV : calculations (-) 
and measurements (0)  with a, = 0.425 mm. 
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FIGURE 8. Experiment I : amplitudes of the subharmonic a, and synchronous a2 components of the 
(0 , l )  wave in the rectangular cylinder with a, = 0.500 mm; calculated, (-) and measured (0 )  
subharmonic amplitudes ; calculated (---) and measured (0) synchronous amplitudes. 

than observed in set 11. Notice that the measured amplitudes do increase with 
forcing amplitude, as predicted. 

Figure 8 shows the results of set I in figure 5. These experiments were conducted 
to test how well (2.11) predicts the amplitude of the synchronous component of the 
wavefield. Unlike the Faraday-wave amplitudes, the synchronous-mode amplitudes 
are much lower than predicted. Surprisingly, the amplitudes of the Faraday waves 
in this set of experiments decreased from those in I11 and IV, although the forcing 
amplitude and the predicted wave amplitudes increased. I n  contrast, the amplitudes 
of the synchronous modes increased from the values in I11 and IV. The subharmonic 
waves in I may have been sufficiently nonlinear to have lost more energy to their 
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FIGURE 9. Experiments on the (4,O) mode in the rectangular cylinder with h = 2.04 cm and S = 
0.026. (a) Stability boundaries: -, k,, = 1.42 cm-' and 6 = 0.010; ---, k,, = 1.45 cm-l and S = 
0.010. Location of experiments with : 0, a, = 0.419 mm; 0 ,  a, = 0.248 mm. (b) Wave amplitudes : 
calculations (---) and measurements (0) with a, = 0.419 mm; calculations (-) and measurements 
(0 )  with a, = 0.248 mm. 

superharmonics than predicted by the weakly nonlinear theory (although, e = 0.037 
for I) .  An alternative explanation may be that the experiments of set I are 
approaching the stability boundary of the (1,l) mode ; in consequence of which the 
single-mode theory may be inapplicable. 

Calculations from (2.7)-(2.10) predict amplitudes reasonably well for waves in the 
circular cylinder. However, they provide only qualitative predictions of amplitudes 
for waves in the rectangular cylinder. The larger discrepancies in the rectangular 
cylinder may have occurred because wave damping in the rectangular cylinder is 
larger than in the circular cylinder and not as adequately predicted by (2.19) (see 
54.1). For example, damping due to corner effects may be present, in addition to that 
from Stokes boundary layers. (See also the last paragraph in $ 1 ) .  
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The results of the final set of experiments are shown in figure 9. They consist of 
measured and predicted amplitudes for wavefields in which only one mode, (4,0),  is 
observed, but two modes, (4,O) and (3, l ) ,  are theoretically available for excitation. 
The experiments are located in the stability space shown in figure 9(a ) .  We observed 
the (4,O) mode in all of the experiments shown, despite the availability of the ( 3 , l )  
mode. Wavefields with frequencies outside the range of those shown were a 
superposition of the (4,O) and ( 3 , l )  modes. Since the (4,O) mode has a smaller 
measured damping rate (6 = 0.026) than the ( 3 , l )  mode (S = 0.028), its selection is 
consistent with the conclusions of $4.1. Nevertheless, (2.5) predicts the excitation of 
the ( 3 , l )  mode; hence, it appears that the calculation for neutral stability, which 
takes into account only one mode, is no longer applicable when two modes are 
available. 

Figure 9 (b )  shows the corresponding wave amplitudes. Predictions and measure- 
ments are in qualitative agreement, so that the single-mode theory appears to be 
applicable in this situation. We have expected it to apply here because only one mode 
was observed and the spatial correlation coefficients (2.16a) for the interaction of the 
(4,O) and ( 3 , l )  modes are zero. 
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